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Abstract 

Approximate analytic expressions for determining the 
transmission of neutron benders which take into ac- 
count reflectivity losses using the mean number of 
reflections agree well with computer simulation results 
which track the neutron trajectories directly, provided 
that the reflectivity is high. The exact calculation 
which can be performed using exponential integral 
functions for any value of the reflectivity is presented. 
Ray-tracing techniques for determining the trans- 
mission and number of reflections for non-perfect 
reflectivity can therefore be replaced by direct calcu- 
lation. 

1. Introduction 

Beam benders and curved guides can be used on 
neutron guide systems for steering the beam over 
short distances (Sutherland & Wroe, 1975) and for 
increasing the number of experimental facilities which 
can be placed at end positions (Schirmer, Heitjans, 
Faber & Samuel, 1990); they can also be used as 
devices on neutron optical systems (Rekveldt & 
Kraan, 1983; Rekveldt, Verkerk & van Well, 1988; de 
Haan, Kraan & van Well, 1990). Ray-tracing simula- 
tion results of neutron trajectories through a beam 
bender have been shown (Schirmer & Mildner, 1991) 
to be in agreement with directly calculated transmis- 
sion curves taking into account the average number 
of reflections made within the beam bender when the 
reflectivity R is very close to unity. The increasing 
deviation of the calculation from the results of the 
simulation at higher wavelengths is accounted for by 
the difference in the method of averaging. The agree- 
ment can be improved when the averaging takes into 
account only those neutrons which are successfully 
transmitted, so that the mean number of reflections 
decreases for R < 1 relative to that for perfect re- 
flectivity (R = 1). This approximation is useful for 
bender designs and can replace Monte Carlo compu- 
tations. However, the agreement decreases as the 
reflectivity deviates significantly from unity because 
the expansion of R" (where n is the number of reflec- 
tions) is an alternating series. At the longer wave- 
lengths the number of reflections increases and the 
series diverges, causing poor agreement with the simu- 
lation. 
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We consider the exact calculation of the transmis- 
sion of the beam bender when the reflectivity is not 
perfect. We also determine the average number of 
reflections for neutrons of a particular wavelength. 
The assumption is that the entrance of the beam 
bender is completely and uniformly illuminated by the 
beam so that all possible successful trajectories are 
analyzed, as in the simulation. 

2. Perfect reflectivity 

The transmission properties of the beam bender or 
curved guide (Maier-Leibnitz & Springer, 1963) are 
determined by a characteristic angle Oc which is de- 
fined by the dimensions of the bender as Oc-- 
(2H/p) 1/2, where H is the width of the slots and p is 
the radius of curvature of the bender, provided that 
H << p. If the height of the bender is much greater 
than the width of the slots, we may consider the 
transmission as a one-dimensional problem. The 
transmission function of the beam bender as a func- 
tion of wavelength 2 depends on the characteristic 
wavelength 2~ which is determined by 2~ = ~/7~, 
where 7c is the critical angle of reflection per unit 
wavelength for the reflecting surface. 

The transmission T(2) of the bender without re- 
flectivity losses rises from zero at very short wave- 
lengths to 2/3 at the characteristic wavelength 2o and 
goes asymptotically to unity at the longest wave- 
lengths; that is, 

T(2) = 2/3(2/2~) 2 2 < ':'~. (1) 

T(2) = 2/3(2~/2){(2/2c) 3 - -  E(,~;/).c) 2 - -  1"] 3/2} /, > A c. 

For 2 < 2o only garland reflections can occur, 
whereas zigzag reflections can occur for 2 > 2c and 
the transmitted spectrum is harder at the concave edge 
of the bender relative to the convex edge. 

The total number of reflections n(7`) for both garland 
and zigzag trajectories which undergo reflection at a 
particular grazing angle 7̀  at the outer (concave) 
surface of the guide is given (Mildner, 1990a) by 

n(z) = L/ZpT` = (L/L~)~k~/7` 7̀  <_ ~ 

and (2) 
n(7` )  = L / p [ z  - -  (7, 2 - -  ~ / t ~ ) 1 / 2 ]  - '  

= 2(L/L~)~cEz - -  (7`2 _ 1 1 / 2 ) 1 / 2 ]  - 1  7` > i//c" 
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These expressions are valid if the bender length L 
is at least as long as the length of direct sight Lc = 
(8Hp) 1/2. The average number of reflections at a wave- 
length 2 is obtained by the integral of n(z) over 
all grazing angles within the distribution re(Z) from 
zero up to the critical angle 0~ corresponding to the 
wavelength 2: 

(n )  = I n(z)m(z) dz m(z) d;~. (3) 
o 

The distribution m(z) of grazing angles for the bender 
both for garland and for zigzag trajectories is given by 

m ( z )  = 4Hz2/d /2c  Z <- Oc 

and (4) 
m(z) = 4H[)~ 2 - -  X(X 2 2 1/2 2 -~,c) ] lOc z>G.  

Then the average number of reflections for such 
trajectories as a function of wavelength is given 
(Mildner, 1990b) by 

(n )  = (3/2)(L/Cc)(2J2) 2 < 2c, 

all of which have garland reflections, and (5) 

(n )  = ( 3 / 2 ) ( L / L ¢ ) [ 2 ( 2 / 2 c )  2 - -  13 

x { (2/2c£ - [ ( 2 / L F  - 113/2} - '  2 > 2,, 

for which some of the trajectories have garland reflec- 
tions and others have zigzag reflections. 

3. Non-perfect reflectivity 
If the reflectivity of the surfaces of the bender is not 
unity, the transmission for a particular trajectory must 
be modified by a factor R ~, where n is the number of 
reflections for that trajectory. In the computer simula- 
tion all possible successful trajectories at a particular 
wavelength must be sampled randomly, so that the 
simulation performs an average (R"),  where ( . . . )  in- 
dicates an average over all trajectories at a given 
wavelength. 

The exact expression for (R")  is given by 

(R")  = I R"(Z)m(x) dz m(z) dz, (6) 
0 

where the number of reflections n(z) as a function 
of grazing angle Z is given by (2) and the distribution 
rn(z) of grazing angles by (4). The distribution m(z), 
illustrated in Fig. 1, is always finite for Z > 0 and is 
zero for Z = 0. The number of reflections n(z), illu- 
strated in Fig. 2, is always finite for finite Z and is 
infinite for Z = 0 and re/2. Since the value of the 
reflectivity R is always less than unity, the integrand 
of the numerator, is well behaved. With the transmis- 
sion [(1)] given by 

Oc / Oc 

we can evaluate (6) to give 

(R")  = 3(2c/2)311og R[ 3 ~ e-Vv -4 dv 2_<2 c 
(;tc/).) [ log R[ 

and (7) 

(R")  = R"(Z)m(z) dx + I R"(Z)m(z) dx m(z) dz 
~c 

= {323 Ilog RI3/[23 - -  ( 22  - -  2 2 ) 3 / 2 ] }  

x e-Vv - 4 d r - 2  ~ e-Vv - 4 d r  
IlogRI 2llogRI 

2x* } 

+ [ 8 l l o g R I 4 ]  -1 ~ e - ° d r  2> ;L  c, 
211ogRI 
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Fig. 1. The distribution m(z) of glancing angles Z at the outer 
surface when a curved guide is fully illuminated in angle and 
space by neutron trajectories. Glancing angles which correspond 
to garland reflections for X < ~k~ have a distribution m(z )=  
4Hz2/~ and to zigzag reflections for Z > ~c [with a glancing 
angle (X 2 - ~) i ;2  at the inner (convex) surface] have a distribu- 
tion re(X) = 4H[z 2 - -  ) ~ ( X  2 - -  0 2 ) 1 / 2 ] / 0 c  - 
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Fig. 2. The total number of reflections n(g) as a function of 
glancing angle g at the outer surface when a curved guide of 
length Lc = (8Hp) 1/2 is fully illuminated. Trajectories which have 
garland reflections have n(g) = ~c/g, and those with zigzag reflec- 
tions have n00 = 2~OdEz- (Z 2 -  ~//2)1/2]. The discontinuity oc- 
curs at X = ~O~ because zigzag trajectories which have a 
glancing angle Z at the outer surface also have a reflection 
with a glancing angle (Z 2 - I//2) 1/2 at the inner surface. --¢.  
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where x* = Ilog Rl{(2/,~c) + I - (2/ ; tc)  2 - 1 ] ~ / 2 } .  Note 
that  x * ~  oo as 2 ~  ~ .  Equat ion (7) is only valid 
because R < 1 and therefore log R < 0. The result 
may be expressed in terms of the exponential  integral 
functions of the form 

by 

E,(¢) = S e -¢ ' t - "  dt 
1 

( R " )  = 3E4(y ) 2 < 2c, 

where y = (2c/2) 11og R I, and by (8) 

( R n )  = 3 { E 4 ( x )  - -  [ E 4 ( 2 x  ) - ( x * / x ) -  3 E 4 ( 2 x * ) ] / 4  

+ [Eo(2X) - (x*/x)Eo(2X*)]/4} 

× { ( V ; t c )  3 - [(;.l~c) 2 - 113/2 } - '  ,,]. > "q-c, 

where x = I log R I and 

x* = Ilog R1{(212c) + E(2/£c) 2 - 13'/2}. 

If we now use (1), the transmission through the 
bender of length L c including reflectivity losses is given 
by 

T(2) = 2(2/2c)2E4(y) 2 < 2~, 

where y = (2c/2)11og R I, and (9) 

T(2) = 2(2c/2){E4(x) - [Eg(Zx) -- (x*/x)-  3E4(2x*)]/4 

+ [Eo(2X)-  (x*/x)Eo(2X*)]/4} 2 > 2c, 

where x = I log R[ and 

x* = Ilog Rl{(212c) + [ ( ,V , l c )  2 - 111/2}. 

This is shown in Fig. 3 for various values of re- 
flectivity. If the bender has a length L, then the 
values of the functions y, x and x* should be multi- 
plied by a factor (L/Lc). Obviously,  increasing the 
length of the bender decreases the transmission for a 
given wavelength. This acts in the same way as de- 
creasing the reflectivity or increasing the value of 

l log R I. For  good reflectivity of the bender surface, 
the maximum in the transmission function occurs 
well above the characteristic wavelength. As the re- 
flectivity becomes poorer  and/or  the length of the 
bender increases, the position of maximum transmis- 
sion moves to lower wavelengths. However, this maxi- 
mum can never occur below the characteristic wave- 
length since the condit ion is e x p ( - y )  = E4(y), where 
y = (2c/2)11og RI, which has a solution at y = ~ only; 
in fact, the second differential of T(2) remains positive 
for 2 < 2c, and, for garland reflections, not only does 
the transmission for perfect reflectivity increase with 
wavelength but the number  of reflections decreases 
monotonically.  However, at 2 = 2c, the number  of 
reflections abrupt ly  increases. Fig. 4 shows the value 
of the maximum transmission as a function of re- 
flectivity for a bender of length L c and Fig. 5 shows the 
position in wavelength of this maximum. For  perfect 
reflectivity, the transmission tends towards unity at 
very long wavelengths (that is, the bender acts as a 
straight guide, see Appendix), whereas for poor  re- 
flectivities at very long wavelengths the transmission 
falls off as (211ogRI) -1, and the maximum in the 
transmission decreases towards zero and approaches  
2 = 2c asymptotically.  
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Fig. 4. The value of the maximum transmission for a bender of 
length Lc as a function of reflectivity R. 
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Fig. 3. The transmission through a neutron bender  of length 
Lc = (8Hp) ~/2 as a function of wavelength ;t for various values of 
the reflectivity R of the surface. 
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Fig. 5. The position in wavelength of the maximum transmission 
for a bender of length L c as a function of reflectivity R. 
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Also for the mean number of reflections we have 

0 

(n)R = I R"(X)n(z)m(z) d z  R"(Z)m(z) dz ,  (10) 
0 

which may also be written as 

(n>R = Id(log <R">)/d(log R)I. 
This is evaluated to give 

<n>R = (2J2)E3(Y)/E4(Y) 2 < 2 ~ ,  

where y = (2J2)llog R I, and (11) 

(n>R = {Ea(x ) -- [Ea(2x ) -- (x*/x)- 2E3(2x*)-[/2 

+ [E_ l(2X) -- (x*/x)gE_ x(2x*)-]/2} 

x {E,~(x) -- [E4(2x) -- (x*/x)-aE4(2x*)-1/4 

+ [-Eo(2X ) --(x*/x)Eo(2X*)]/4} -1 2 > 2~, 

where x = [log R I and 

x* = Ilog R1{(2/20 + [(2/202 - 111/2}. 

This is shown in Fig. 6 for various values of reflec- 
tivity. The value of the minimum number of reflec- 
tions ( n ) g  mi,, which always occurs at 2 = 2~, shows 
a steady decrease from 3/2 at R = 1 for L = L~. 
This is illustrated in Fig. 7 as a function of reflectivity 
R and for L = L~. Of course, these values cannot be 
simply multiplied by a factor (L/L¢) for an arbitrary 
bender length L for values of R # 1; the values of the 
functions y, x and x* should also be multiplied by a 
factor (L/LO. In the limit of long wavelengths, x* ~ 
and E,(2x*) ~ 0, so that the asymptotic value of (n )g  
for large 2 is given by 

E3(X ) - -  E3(2x)/2 + E_,(2x)/2 
(?/,>g asympt----- E4(X ) __ E,,(2x)/4 + Eo(2X)/4 

(12) 

Values of this asymptotic limit as a function of re- 
flectivity R for a bender of length Lc are shown in 
Fig. 8. These values are consistent with that, I log R] - 1, 
derived in the Appendix for the long straight guide at 

long.wavelengths. Obviously, for perfect reflectivity 
(R = 1), the asymptotic limit is infinite and (n)R ap- 
proaches 2(2/2c) for 2 >> 2c. 

Similarly, for the mean square number of reflec- 
tions, we have 

(nz)R = ~ R"(X)n(z)2m(z) d z  R"(Z)m(z) d z ,  (13) 
o 

which may also be written as 

(nz)R = dE(log (R"))/d(log R) 2. 

This is evaluated to give 

(rl2)R = (2c/2)2E2(y)/E,,(y) ,'q. <_ 2o 

where y = (2J2)llog R 1, and (14) 

<n~>,~ = { e ~ ( x )  - [ e ~ ( 2 x )  - (x*/x)-'e~(2x*)-I 

+ [ E ,  2(2x) - (x*/x)3E- 2(2x*)3} 

× {E4(x) - [E4(Zx) - (x*/x)-3Eg(2X*)]/4 

+ [Eo(Zx) - (x*/x)Eo(2X*)]/4} -1 2 > 2o 

where x = [log R[ and 

x* --I log Rl{(;,/;tO + I-(;,/;~c) 2 - 111/2}. 
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Fig. 7. The minimum number of reflections (n)R rain at a wavelength 
2 = 2¢ for a bender of length Lc as a function of reflectivity R. 
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Fig. 6. The average number of reflections for trajectories which 
pass through a neutron bender of length Lc = (8Hp) ~/2 as a 
function of wavelength 2 for various values of the reflectivity R 
of the surface. 
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In the limit of long wavelengths, x*--+ oo and 
E.(2x*) --+ 0, so that the asymptotic value of ( r t2 )R for 
large 2 is given by 

E2(x  ) --  Ez(2X ) + E _  2(2x) 

( ? 1 2 ) R a s y m p t -  g 4 ( x  ) --  E4(2x)/4 + go(2X)/4 2 > 2,. 
(15) 

By analogy to the long straight guide at long wave- 
lengths the asymptotic value of ( n Z ) R  is 2[log R[ - 2  
Hence ( n Z ) R -  ( n )  2 approaches [ I o g R [  -2  asymp- 
totically. 

Schirmer & Mildner (1991) have shown for values 
of R close to unity that (R")  may be approximated by 
R <">", where ( r t )R  is given by 

(n)R = (n )  - ( 1  - R)((n 2) - (n)2). (16) 

This result may be found by taking the first-order 
term in a Taylor-series expansion of (n)R about (n )  
using (10) and (13). Since this result does not involve 
special functions, it can often be more useful for 
calculations involving short benders, with a small 
number of reflections, and with high reflectivity. 

4. Different refractive indices 

The grazing angle ;( at the outer (concave) surface for 
zigzag trajectory is always greater than the grazing 
angle ;( at the inner (convex) surface such that 

Z,2 = 2~2 _ 4'2. (17) 

Hence the surface coatings of the curved guide can 
have different refractive indices (Sch/irpf, 1989; de 
Haan, Kraan & van Well, 1990); that is, the inner 
surface may have a smaller value of the critical angle 
per unit wavelength 7'c than that, ~/~, of the outer 
(concave) surface, so that y'Jy~ = / ,  < 1. For example, 
the beam bender on the LOQ spectrometer (Heenan 
et aL, 1992) at the ISIS facility uses glass vanes with 
a supermirror coating only on the concave surface. 
Provided that the reflection coefficients of the two 
surfaces are the same, this has no effect on the trans- 
mission of neutrons for wavelengths less than some 
value 2., which is determined by that trajectory for 
which the grazing angles at each surface are equal to 
their critical angles at that wavelength; that is, 

/,  __ ~,c2" __ O, c __ (0 2 __ 4'2)1/2 -- -- (22 -- 22)1/2 (18) 

~ 2 .  O~ Oc 2. 

The value o f / ,  is related to n and n', the refractive 
indices for the concave and convex surface coatings 
respectively, by /.2 ~--. (1 --  n')/(1 - n). 

Hence this wavelength 2. is given by 

2. = 2c(1 - / , 2 ) - 1 / 2  (19) 

For wavelengths 2 greater than 2., the extra accep- 
tance in phase space beyond that for 2 = 2. is de- 
termined by the critical angle of the inner (convex) 

surface and not the outer (concave) surface, because 
0'~ is now less than (02 -4'2)1/2. The transmission 
equation (1) is valid only for the range 2 < 2. and the 
transmission for wavelengths greater than 2. must be 
modified. The critical angle 0'~ = 7'c2 =/,?~2 =/,0~ at 
the convex surface defines a limiting grazing angle 
(O,Z + 4'z)1/2 at the concave surface. In terms of wave- 
length, the transmission of the curved guide for 2 > 2. 
is given by (de Haan, Kraan & van Well, 1990) 

T(2) = 2/3[(/.222 + 22) 3/2 - / , 3 2 3 ] / 2 2 2  

2 > 2 u = 2 ~ ( 1 - - / . 2 ) - 1 / 2 .  (20) 

This expression goes to a finite value of/ ,  for infinite 
2. This is expected since at long wavelengths the 
acceptance is determined by the critical angle 0'c at the 
convex surface, whereas the input divergence is given 
by 0~, so that the transmission varies as 0'J0c, which 
by (18) is equal to/ , .  

If the reflectivities of the two surfaces are different 
from each other and non-perfect, the exact expression 
for (R")  for 2 > 2~ is different from (7). Let R and R' 
be the reflectivities of the concave and convex surfaces 
respectively. Equation (6) for (R")  and 2 > 2~ should 
be replaced by 

[! o, ] 
(R" )  = R"tX)m(z) dz + ~ R"'~X)R'"'~X)rn(x) dz 

O, 

1-' x re(Z) dz 2 > 2~, (21) 

where if(Z) = 4'~[Z - (22 - 4'2)1/2]- 1 is the number of 
zigzag reflections at each surface. The value of 0* is 
0~ for 2c < 2 < 2, and is (laZO 2 + 4,2) 1/2 for 2 > 2,. We 
can evaluate (21) to give 

(R" )  = {323/[23 - (12 - 22)3/2]} 

x {l logRI 3 S e - " v - g d v  
IIogRI 

2X* 

-¼IlogRR'I 3 ~ e-Vv -4 dv 
2[logRI 

2x. } 
+ ¼llog RR'1-1 ~ e -v dv 2 > 2~, 

I log RR'[ 
(22) 

where 2x* = Ilog RR'I{(2/20 + [(2/2c) 2 --  1] 1/2} for 
2c < 2 < 2. [that is, exactly (7) where 21log R I is 
replaced by [log RR'I] and 2x* = l log RR'] [(/,222 + 
22) 1/2 + / . 2 ] / 2 c  for 2 > 2.. 

The above result may be expressed in terms of the 
exponential integral functions by 

(R")  = 3{E4(x) - [E4(2x') --(x*/x)-3E,,(2x*)]/4 

+ [Eo(2X') - (x*lx)Eo(2X*)]/4 } 

x { ( 2 1 2 c )  3 - E(2 /2c )  2 - 1 ] 3 / 2 }  - ' ,  ( 2 3 )  
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where x = I log R] and 2x' = I log RR'I. Hence the 
transmission through a bender of length L~ including 
different reflectivity losses from the two surfaces is 
given by 

T(2) = 2(2J2){E4(x) - [E4(2x') -- (x*/x)-3E,,(2x*)]/4 

+ [Eo(2X')-  (x*/x)Eo(2X*)]/4} 2 > 2~. 
(24) 

5. Concluding remarks 

We have shown that the transmission of a neutron 
bender or curved guide with any value of reflectivity 
can be determined exactly using exponential integral 
functions. We assume that the entrance of the bender 
is illuminated fully and uniformly both in position and 
in angle. The functional form differs above and below 
the characteristic wavelength of the guide, and we 
have determined various properties of the transmis- 
sion as a function of wavelength. The mean number 
and the mean-square number of reflections have also 
been determined for any value of reflectivity in terms 
of exponential integral functions. These expressions 
become the same as those for the straight guide in the 
limit of large wavelengths. From the results, a simple 
approximate expression for the transmission can be 
obtained which has been shown useful for short bend- 
ers with high reflectivity. The calculations have also 
been applied to the transmission for a beam bender 
which has different coatings on the inner and outer 
surfaces of the guide. In addition, a bender with 
magnetic reflecting surfaces for which 7~ has two 
values dependent on the direction of the neutron spin 
relative to the magnetic induction vector enables the 
device to transmit neutrons with one spin state and 
not the other by having different reflection properties 
for each state (Hayter, Penfold & Williams, 1978). 

APPENDIX 

We derive similar results for the straight guide. The 
transmission properties of the straight guide are de- 
termined by the guide divergence angle ~o = H/L, 
where H is the distance between the inner walls of the 
guide and L is the length of the guide. The distribution 
m(x) of grazing angles for the straight guide for 
0c < ~o is given by 

m(x) = 2H Z < 0c 

re(g) = 2H(¢o - g)/~o X > 0~ 

and for 0~ > Ipo by (A1) 

re(X) = 2H all X. 

All trajectories are necessarily zigzag and the num- 

ber of reflections as a function of grazing angle is given 
by n(g) = X/fro. For perfect reflectivity, the transmis- 
sion is unity and the average number of reflections at 
a wavelength 2 is obtained by the integral of n(z) over 
all grazing angles within the distribution m(g) from 
zero up to the critical angle 0c corresponding to the 
wavelength 2 (=  0JTc). That is, 

0 

(n> = I n(z)m(7~) dx re(Z) dz. (A2) 
o 

The mean number of reflections is therefore given 
by 

<n> = 2~/(; ~ + 2~) 2 < 20 
(A3) 

(n> = 2/220, 2 > 20 

where 2o = ¢o/7c. 
For non-perfect reflectivity, the transmission must 

be modified by a factor (R">, which is defined b y  

, /0! 
(R"> = j" R"(X)m(z) dx m(z) dz. (A4) 

o 

This may be evaluated exactly to give 

<R"> = {(22~/11og R[)[1 - e x p ( - - l l o g  R12/2o)3 

+ (;o - 2)~}/(2 ~ + ;20) 2 < 20 
(AS) 

<R"> = (llog R12/2o)- '[1 - e x p ( - l l o g  R12/2o)] 

2 > 2 0  . 

In the limit of perfect reflectivity, both these 
expressions reduce to unity. In the limit of long 
wavelengths and/or large guide length with 
poor reflectivity, this expression becomes <R"> = 
(llog RI2/ 20) -1 

Also for the mean number of reflections we have 

, /0! 
(n>R = ~ R"(X)n(x)m(z) d)(. R"~X)m(x) d~, (A6) 

o 

which is evaluated to give 

(n>R = {1 -- [1 + I1og RI2/2o] exp(--]log RI2/2o) } 

x {llog RI[1 - -exp(-- I log RI2/2o) 

+ Ilog Rl(2o - 2)2/222]} -1 2 < 20 

<n>R = {1 -- [1 + Ilog R12/2o3 e x p ( - l l o g  R12/2o)} 

x {llog RI[1 - e x p ( - I l o g  RI2/2o)]} -1 

2 >_ 2 o. (A7) 

In the limit of perfect reflectivity, these expressions 
reduce to (A3). In the limit of long wavelengths and/or 
large guide length with poor reflectivity, <n>R ap- 
proaches l log R I- 1 asymptotically. 

Similarly for the mean square number of reflections 
we have 
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(n2)R = j" R"tX)n(g)2m(~.) dx R"tZ)m(x) dx, (A8) 
o 

which is evaluated to give 

(n2)R = {2 - [2 + 21log RlA/Ao + (llog R12/2o) 2] 

x exp( - l log  R12/2o)} 

x {llog R[2[1 - e x p ( - l l o g  R12/2o) 

+ Ilog Rl(2o - ,~ . )2 /2 /~2]}  - 1 /~ < '~0 

(n2)R = {2 -- I-2 + 2llog R12/2o +([ log R12/2o) 23 

× exp( - l log  R12/2o)} 

× {llog RI21-1- exp( - I log  RI2/2o)]} -1 

2 > 20. (A9) 

In the limit of perfect reflectivity, these expressions 
reduce to 223/32o(2 z + 22) for 2 < 2o and 1/3 (2/2o) z 
for 2 > 2o, as expected. In the limit of long wave- 
lengths and/or large guide length with poor 
reflectivity, (nZ)R approaches 2llog R I- z asymptotic- 
ally. Hence (?/2)R--(/ ' / )2 approaches IlogR1-2 
asymptotically. 
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